Comparison of Local Information Indices Applied in Resting State Functional Brain Network Connectivity Prediction
نویسندگان
چکیده
Anatomical distance has been widely used to predict functional connectivity because of the potential relationship between structural connectivity and functional connectivity. The basic implicit assumption of this method is "distance penalization." But studies have shown that one-parameter model (anatomical distance) cannot account for the small-worldness, modularity, and degree distribution of normal human brain functional networks. Two local information indices-common neighbor (CN) and preferential attachment index (PA), are introduced into the prediction model as another parameter to emulate many key topological of brain functional networks in the previous study. In addition to these two indices, many other local information indices can be chosen for investigation. Different indices evaluate local similarity from different perspectives. Currently, we still have no idea about how to select local information indices to achieve higher predicted accuracy of functional connectivity. Here, seven local information indices are chosen, including CN, hub depressed index (HDI), hub promoted index (HPI), Leicht-Holme-Newman index (LHN-I), Sørensen index (SI), PA, and resource allocation index (RA). Statistical analyses were performed on eight network topological properties to evaluate the predictions. Analysis shows that different prediction models have different performances in terms of simulating topological properties and most of the predicted network properties are close to the real data. There are four topological properties whose average relative error is less than 5%, including characteristic path length, clustering coefficient, global efficiency, and local efficiency. CN model shows the most accurate predictions. Statistical analysis reveals that five properties within the CN-predicted network do not differ significantly from the real data (P > 0.05, false-discovery rate method corrected for seven comparisons). PA model shows the worst prediction performance which was first applied in models of growth networks. Our results suggest that PA is not suitable for predicting connectivity in a small-world network. Furthermore, in order to evaluate the predictions rapidly, prediction power was proposed as an evaluation metric. The current study compares the predictions of functional connectivity with seven local information indices and provides a reference of method selection for construction of prediction models.
منابع مشابه
Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملTinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity
Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کامل